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Abstract

We continue the investigation of Spin(7) holonomy metric of cohomogeneity one with the prin-
cipal orbit SU(3)/U(1). A special choice ofU(1) embedding in SU(3) allows more general metric
ansatz with five metric functions. There are two possible singular orbits in the first-order system of
Spin(7) instanton equation. One is the flag manifold SU(3)/T 2 also known as the twistor space of
CP(2) and the other isCP(2) itself. Imposing a set of algebraic constraints, we find a two-parameter
family of exact solutions which have SU(4) holonomy and are asymptotically conical. There are
two types of asymptotically locally conical (ALC) metrics in our model, which are distinguished
by the choice ofS1 circle whose radius stabilizes at infinity. We show that this choice ofM theory
circle selects one of the possible singular orbits mentioned above. Numerical analyses of solutions
near the singular orbit and in the asymptotic region support the existence of two families of ALC
Spin(7) metrics: one family consists of deformations of the Calabi hyper-Kähler metric, the other
is a new family of metrics on a line bundle over the twistor space ofCP(2).
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1. Introduction

By string dualities intriguing dynamics in supersymmetric compactification of super-
strings andM theory are often associated with singularities in manifolds of special holon-
omy which appear at finite distance in the moduli space. If the singularity is isolated and
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conical, we may expect that the details of the metric far from the singularity are irrelevant
and as an approximation of the singular geometry take a simple Ricci-flat cone metric over
ann-dimensional Einstein manifoldM:

ds2 = dr2 + r2 dΩ2, 0 ≤ r < +∞, (1.1)

where the Einstein metric dΩ2 satisfiesRab = (n − 1)gab. For supersymmetry a parallel
spinor should exist on the cone and it comes from a Killing spinor onM [1–3]. Unless,
the Einstein manifold is then-dimensional sphereSn = SO(n + 1)/SO(n), there is a
conical singularity atr = 0. When the manifoldM is a homogeneous spaceG/K, a
resolution of the singularity may be provided by the following metric of cohomogeneity one
[4–6]:

ds̃2 = dt2 + gG/K(t), t0 ≤ t < +∞, (1.2)

wheregG/K(t) is a t-dependent homogeneous metric on the principal orbitG/K. This
sort of resolution of an isolated conical singularity has been employed recently in the
discussion of IR strong coupling dynamics of supersymmetric gauge theories based on
gauge theory/gravity correspondence in largeN limit [7–14].

The requirement of special holonomy, which can be expressed as linear constraints on
the spin connectionωab, gives a first-order system of flow equations for one-parameter
family of homogeneous metricsgG/K(t). The boundary condition should be specified in
solving the flow equation. At the boundaryt = t0 there appears a singular orbitG/H with
K ⊂ H ⊂ G. This singular orbit has a finite volume and the original conical singularity is
developed when the volume ofG/H tends to vanishing. The cosetH/K has to be a sphere
Sk for the principal orbitG/K to degenerate smoothly to the singular orbit[15]. When
there are several choices of the subgroupH such thatH/K 	 Sk, there may be more than
one way of resolving the conical singularity. A famous example is given by the conifold
that is a cone over the five-dimensional coset spaceT 1,1 = SU(2) × SU(2)/U(1). There
are three possible singular orbits[16]:

1. H = U(2),G/H 	 S2, H/K 	 S3,
2. H = SU(2),G/H 	 S3, H/K 	 S2,
3. H = U(1) × U(1),G/H 	 S2 × S2, H/K 	 S1.

In this paper we will see a similar example of this kind, when the principal orbit is the
seven-dimensional coset spaceN(1,1) = SU(3)/U(1).

The other side of the boundary is specified by the asymptotic behavior of the solution.
A standard behavior is that the homogeneous metricgG/K(t) asymptotically approaches
to the original Einstein metric dΩ2. Such metrics are called asymptotically conical (AC).
From the viewpoint of compactifications ofM theory we are also interested in the asymp-
totic behavior called asymptotically locally conical (ALC)[17], where there is a circle
whose radius remains finite at infinity. In[18], by considering the geometry of ALE
fibration over a supersymmetric cycle, it has been argued that anM theoretic lift of
a type IIA geometry withD6 branes wrapping on the SUSY cycle is given by purely
gravitational configuration. (See also[19] for a relation of theM theoretic lift to Spinc
structure.) SuchD6 brane configurations have been discussed from the dual picture of
eight-dimensional supergravity in[20,21]. Since theM theory circle which is related to
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the string coupling of IIA theory should remain finite asymptotically, the corresponding
metric is expected to be ALC. In fact when the SUSY cycle isS4 in Spin(7) manifold
andS3 in G2 manifold, such ALC metrics were constructed in[17,22], respectively. More
recently a similar ALC metric has been found for a SUSY cycleCP(2) in [19,23,24].
Even if we assume that the metric is ALC, the choice ofM theory circle in the princi-
pal orbit may not be unique, when there are more than one irreducible modules of di-
mension one in the isotropy representation on the tangent space of the principal orbit.
Due to the special choice ofU(1) subgroup to be introduced shortly, the isotropy rep-
resentation of the coset spaceN(1,1) = SU(3)/U(1) has three one-dimensional irre-
ducible components. Recently,M theory on ALC Spin(7) manifolds has been discussed in
[19,25].

In this paper taking the homogeneous space SU(3)/U(1) (also known as the Aloff–
Wallach space), we investigate aspects of the special holonomy metrics of cohomogeneity
one. In our previous work[23] we left a choice ofU(1) subgroup in SU(3) free so that
the trialityW(SU(3)) (=the Weyl group) symmetry was manifest. In the following we will
fix the embedding so that theU(1) subgroup is diag(eiθ ,eiθ ,e−2iθ ). In this case we can
make a more general metric ansatz with five functions, while in general the number is 4.
In Section 2we derive a first-order system for Spin(7) holonomy and classify a possible
singular orbit appearing at the boundary. In our metric ansatz there is a natural candidate
for a Kähler two form. The closedness (or the integrability) of the candidate two form gives
a set of algebraic constraints that allows us to solve the flow equation exactly. InSection
3 we present a two-parameter family of exact solutions which is asymptotically conical.
They are SU(4) holonomy metrics on the line bundle over the flag manifold SU(3)/T 2,
which is a two-sphere bundle overCP(2). When one of the parameters vanishes, then the
S2 fiber collapses and the metric reduces to the Calabi hyper-Kähler metric onT ∗CP(2). An
analysis of ALC solutions is carried out inSection 4. Due to the generalized metric ansatz
with five metric functions there are two choices of a circle whose radius remains finite
asymptotically. We find that if we assume the metric is non-singular, the ALC asymptotic
behavior requires a reduction of the number of metric functions from 5 to 4, but the way of
reduction depends on the choice ofS1 factor in the principal orbit. From the perturbative
analysis around the singular orbit we see one of the possible singular orbits is selected by
each reduction and thus there are two types of ALC Spin(7) metrics. The topology of the
singular orbit and the choice ofM theory circle cannot be independent and the singular
orbit is eitherCP(2) or Flag6 = SU(3)/T 2 depending on the choice of asymptoticM
theory circle.

Since we could not find explicit solutions in general, we have numerically worked out
perturbative series expansions both around the singular orbit and in the asymptotic region.
In Section 5, based on this numerical analysis we propose the “moduli” space of Spin(7)
metrics of cohomogeneity one with the principal orbit SU(3)/U(1) for the special choice
of U(1) subgroup. Especially, we observe that two types of ALC metrics inSection 4are
in fact interpolated by the exactly known Ricci-flat Kähler metrics obtained inSection 3.
The existence of ALC metrics whose singular orbit is Flag6 is shown only numerically. But
their qualitative behavior is much like the Atiyah–Hitchin metric in four dimensions. Hence
we believe that this is an analogue of Spin(7) metric calledC8 in [24,26], whose singular
orbit is CP(3), the twistor space ofS4.
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2. Instanton equation with five metric functions

The maximal torusT 2 of the Lie group SU(3) is two-dimensional and itsU(1) subgroup
is specified by integers�n = (n1, n2, n3) with n1 + n2 + n3 = 0. Without loss of generality
we can assume that there is no common divisor ofni . Explicitly, theU(1) subgroup is given
by diag(ein1θ ,ein2θ ,ein3θ ). In previous paper on Spin(7) metric of cohomogeneity one with
the principal orbit SU(3)/U(1), we took the following metric ansatz[23]:

g = dt2 + a(t)2(σ 2
1 + σ 2

2 ) + b(t)2(Σ2
1 + Σ2

2) + c(t)2(τ2
1 + τ2

2 ) + f (t)2T 2
A, (2.1)

which is consistent with any choice of the embedding parameters�n and consequently gives
a formulation which has manifest symmetry underΣ3 = W(SU(3)); the Weyl group of
SU(3). Our convention of SU(3) left invariant one forms is summarized inAppendix A.
The components of invariant one form for the maximal torusT 2 are denoted asTA andTB .
The corresponding generators are given by

EA = − 1

∆

 αB 0 0

0 βB 0

0 0 γB

 , EB = 1

∆

 αA 0 0

0 βA 0

0 0 γA

 (2.2)

with αA + βA + γA = αB + βB + γB = 0 and∆ = βAαB − αAβB . The generator of the
U(1) subgroup isEB . Note that the bases of the Lie algebra su(3) and the components of
the left invariant one form are in dual relation and hence the role of parametersαA, βA, γA
andαB, βB, γB is exchanged.

When theU(1) subgroup generated byEB decouples from one ofσ , Σ andτ , more
general metric ansatz is allowed since in this case the isotropy representation of SU(3)/U(1)
becomes

su(3)

u(1)
= p1 ⊕ p2 ⊕ p3 ⊕ p̃3 ⊕ p4, (2.3)

where dimp1 = dim p2 = 2 and dimp3 = dim p̃3 = dim p4 = 1. Then the metric ansatz
becomes

g = dt2 + a(t)2(σ 2
1 + σ 2

2 ) + b(t)2(Σ2
1 + Σ2

2) + c1(t)
2τ2

1 + c2(t)
2τ2

2 + f (t)2T 2
A,

(2.4)

where we assume thatτ1 andτ2 are singlets. The reduction of the holonomy group from
SO(8) to Spin(7) is represented by the octonionic instanton equation[27–29] (see also
Appendix B). We can see the octonionic instanton equation derived from the above ansatz
does not haveTB component, if and only if dτi has noTB component. We haveνB = 0
and henceαA = βA (seeAppendix A). Then the generator of theU(1) subgroup isEB =
diag(1,1,−2) and the charge vector�n in the Maurer–Cartan equation of dTA is fixed to be
�n = (1,1,−2). Note that this is the case where the action of the Weyl group degenerates. We
obtain the following system of first-order differential equations as the octonionic instanton
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equation on the spin connectionωab derived from the metric ansatz(2.4):

ȧ

a
= b2 + c2

1 − a2

2abc1
+ b2 + c2

2 − a2

2abc2
− f

a2
,

ḃ

b
= c2

1 + a2 − b2

2abc1
+ c2

2 + a2 − b2

2abc2
− f

b2
,

ċ1

c1
= a2 + b2 − c2

1

abc1
+ 2f

c1c2
+ c2

2 − c2
1

2c1c2f
,

ċ2

c2
= a2 + b2 − c2

2

abc2
+ 2f

c1c2
+ c2

1 − c2
2

2c1c2f
,

ḟ

f
= f

a2
+ f

b2
− 2f

c1c2
+ (c1 − c2)

2

2c1c2f
. (2.5)

This first-order system has a discreteZ2 × Z2 symmetry generated by(a, b, c1, c2) →
(±a,∓b,−c1,−c2) and two exchange symmetriesa ↔ b andc1 ↔ c2. We note that
though any independent sign flip of metric functions that is not necessarily included above
has no effect on the metric itself or at the level of Ricci-flatness, but donot keep the instan-
ton equation invariant. The first-order system(2.5)is an integral of the second-order Einstein
equation and the change in the instanton equation means the different ways
of integration.

Let us classify possibilities of the singular orbit compatible with the evolutionequation
(2.5). Group theoretically the singular orbit is in one to one correspondence to a subgroup
H which satisfyU(1) ⊂ H ⊂ SU(3) andH/U(1) should be a sphere which is collapsing
at the singular orbit. Thus we find three possibilities:

1. H = U(1)×U(1). In this caseH/U(1) 	 S1 is collapsing and the singular orbit is the
twistor space ofCP(2); SU(3)/H 	 Flag6, which is topologically a two sphere bundle
overCP(2).

2. H = SU(2). In this caseH/U(1) 	 S2 is collapsing and the singular orbit is SU(3)/H 	
S5, which is the Hopf bundle overCP(2).

3. H = S(U(2)×U(1)). In this caseH/U(1) 	 S3 is collapsing and the singular orbit is
SU(3)/H 	 CP(2) itself.

We assume that the singular orbit is att = 0 and make the following series expansion
for smallt :

a(t) = p +
∑
k≥1

akt
k, b(t) = q +

∑
k≥1

bkt
k, c1(t) = m +

∑
k≥1

c1kt
k,

c2(t) = n +
∑
k≥1

c2kt
k, f (t) = r +

∑
k≥1

fkt
k. (2.6)

The parametersp, q,m, n, r are regarded as the “initial conditions” at the singular orbit.
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Substituting the series expansion to(2.5)and looking at the leading order, we obtain

a1 = 1

2

(
q

m
+ m

q
− p2

mq
+ q

n
+ n

q
− p2

nq
− 2r

p

)
,

b1 = 1

2

(
p

m
+ m

p
− q2

mp
+ p

n
+ n

p
− q2

np
− 2r

q

)
,

c11 = p

q
+ q

p
− m2

pq
+ 2r

n
+ n

2r
− m2

2nr
,

c21 = p

q
+ q

p
− n2

pq
+ 2r

m
+ m

2r
− n2

2mr
,

f1 = r2

p2
+ r2

q2
− 2r2

mn
+ n

2m
+ m

2n
− 1. (2.7)

Now the above three possibilities of the singular orbit correspond, respectively, to the
following initial conditions:

1. S1 is collapsing;r = 0,
2. S2 is collapsing;p = 0, orq = 0,
3. S3 is collapsing;p = r = 0, orq = r = 0.

Firstly, in case 2 there is no regular solution at the singular orbit, since there is no way
to makef1 regular.1 On the other hand, in case 1 we see that the regularity ofc11 andc21
requiresm2 = n2. But m = n implies f1 = 0, which means that theS1 is collapsing
“too” fast neart = 0. Thus only the casem = −n can give non-singular solutions. This
also means that this type of singular orbit is not allowed in generic cases where we have
c1 = c2. In this casep andq are free parameters andf1 = −2. Finally, in case 3 there are
non-singular solutions ifm2 = n2 = q2 or m2 = n2 = p2. Thus, neart = 0 we have two
types of boundary conditions which correspond to cases 1 and 3, respectively,

g → dt2 + 4t2T 2
A + p2(σ 2

1 + σ 2
2 ) + q2(Σ2

1 + Σ2
2) + m2(τ2

1 + τ2
2 ), (2.8)

g → dt2 + t2(T 2
A + σ 2

1 + σ 2
2 ) + m2(Σ2

1 + Σ2
2 + τ2

1 + τ2
2 ). (2.9)

Note that the terms withσ 2
i , Σ2

i andτ2
i in (2.8)describe the singular orbit Flag6 squashed

by the parametersp, q andm, while the term withΣ2
i + τ2

i in (2.9)represents the singular
orbit CP(2) with the Fubini–Study metric. In the following we call the first case A-type
boundary and the second case B-type boundary. If we regard the homogeneous space Flag6
as anS2-bundle overCP(2), then B-type boundary may be reduced from A-type one by
making the fiberS2 collapse. The higher order terms of the series expansion are summarized
in Appendix C.

1 However, another special choice ofU(1) embedding seems to allowS5 as a singular orbit[24]. It might be
very interesting to see why it is the case, since there is no odd-dimensional SUSY cycle in eight dimensions.
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3. Explicit AC solutions of SU(4) holonomy

In terms of the vielbeins (the orthonormal frames) of our metric ansatz, we can write
down the following non-degenerate two form

ω = f dt ∧ TA − c1c2τ1 ∧ τ2 − a2σ1 ∧ σ2 − b2Σ1 ∧ Σ2, (3.1)

which is a natural candidate for a Kähler form. Using the first-order equation for functions
a, b andci , we see that the condition dω = 0 is equivalent to the constraints

a2 + b2 + c1c2 = 0, c1 + c2 = 0. (3.2)

They are compatible with the first-order system(2.5)and we obtain the following reduction
with c := c1 = −c2:

ȧ = −f

a
, ḃ = −f

b
, ċ = −2f

c
, (3.3)

ḟ = f 2

a2
+ f 2

b2
+ 2f 2

c2
− 2. (3.4)

We can solve this reduced first-order system exactly. The first two equations of(3.3)implies

b2 − a2 = /2, (3.5)

where/2 is an integration constant. Due to the exchange symmetry ofa andb, we may
assumeb2−a2 ≥ 0. Furthermore by a change of variables dt = c/(2f )dr we can integrate
a, b, c to obtain

a2 = 1
2(r

2 − /2), b2 = 1
2(r

2 + /2), c2 = r2, (3.6)

where we have fixed an integration constant by requiringc2 = r2. Substituting the above
solution intoEq. (3.4)we have

d

dr
f 2 = 2r − 2f 2

(
r

r2 − /2
+ r

r2 + /2
+ 1

r

)
. (3.7)

It is possible to integrate this differential equation:

f 2 = r2

4

(
1 − /4

r4

)
U(r), U(r) = 1 − k8

(r4 − /4)2
. (3.8)

We thus find the following metric of SU(4) holonomy:

ds2 =
(

1 − /4

r4

)−1

U(r)−1 dr2 + 1

2
(r2 − /2)(σ 2

1 + σ 2
2 ) + 1

2
(r2 + /2)(Σ2

1 + Σ2
2)

+r2(τ2
1 + τ2

2 ) + 1

4
r2
(

1 − /4

r4

)
U(r)T 2

A, (k4 + /4)1/4 ≤ r, (3.9)

which is asymptotically conical. The singular orbit atr = (k4 + /4)1/4 (k �= 0) is the flag
manifold SU(3)/T 2, or the twistor space ofCP(2). Hence this metric is a Ricci-flat Kähler
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metric on the canonical line bundle over the flag manifold and it is in the class discussed in
[30,31]. (See also[32] on the construction of Ricci-flat metrics on the canonical line bundle
over Hermitian symmetric spaces based on the Kähler potential of supersymmetric gauge
theory.) We also note that when/ = 0, k �= 0, the metric constructed in[16] is reproduced.
The first-order system in[16] corresponds to the casea = b, c1 = −c2 in this paper and
cannot cover the most general case. This is the reason why we can obtain more general
solutions with two parameters. On the other hand, when/ �= 0, k = 0 thenU(r) ≡ 1 and
the solution reduces to the Calabi hyper-Kähler metric overT ∗CP(2) of Sp(2) holonomy
[16,33]:

ds2 =
(

1 − /4

r4

)−1

dr2 + 1

2
(r2 − /2)(σ 2

1 + σ 2
2 ) + 1

2
(r2 + /2)(Σ2

1 + Σ2
2)

+r2(τ2
1 + τ2

2 ) + 1

4
r2
(

1 − /4

r4

)
T 2
A, / ≤ r (3.10)

with three Kähler forms,

ω1 = ω, ω2 = c dt ∧ τ1 − cfTA ∧ τ2 − ab(σ1 ∧ Σ1 − σ2 ∧ Σ2),

ω3 = c dt ∧ τ2 + cfTA ∧ τ1 + ab(σ1 ∧ Σ2 + σ2 ∧ Σ1). (3.11)

The flag manifold SU(3)/T 2 is a two-sphere bundle overCP(2) and in the limitk → 0 the
S2-fiber collapses to develop the singular orbitCP(2).

4. Two types of ALC Spin(7) metric

From the view point of compactification ofM theory it is of great interest to classify
possible ALC metric. Whenc1 = c2, an example of such ALC Spin(7) metric is given by
[23,24]

ds2 = (r − /)2

(r + /)(r − 3/)
dr2 + (r − /)(r + /)(σ 2

1 + σ 2
2 + Σ2

1 + Σ2
2)

+(r − 3/)(r + /)(τ2
1 + τ2

2 ) + /2 (r + /)(r − 3/)

(r − /)2
T 2
A, 3/ ≤ r, (4.1)

where the fiber over the baseCP(2) is notR4 but R4/Z2. Note that this is different from
the case of the Calabi metric. This is due to the fact that for the Calabi metric it isσ 2

1 + σ 2
2

part that is collapsing at the singular orbit, but it isτ2
1 + τ2

2 in the above ALC metric.
Let us consider the ALC Spin(7) solutions that interpolate between the short distance ge-

ometry of the formR2×Flag6 (A-type boundary) orR4×CP(2) (B-type boundary) and the
large distance geometry of the formS1×C(Flag6), whereC(Flag6) is the seven-dimensional
cone over Flag6. We then assume that the metric functions take the following form for the
large distancet :

1. a(t) = ta0 + α(t), b(t) = tb0 + β(t), c1(t) = γ1(t), c2(t) = tc20 + γ2(t), f (t) =
tf0 + ζ(t),
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2. a(t) = ta0 + α(t), b(t) = tb0 + β(t), c1(t) = tc10 + γ1(t), c2(t) = tc20 + γ2(t),
f (t) = ζ(t),

wherea0, b0, ci0, f0 are constants andα, β, γi , ζ are smooth functions tending to finite
value fort → ∞. In case 1, theS1 direction isτ1 and at larget the functionc1 approaches
a constantM1 = γ1(∞), while in case 2 the functionf of theS1 directionTA approaches
a constantM2 = ζ(∞). The octonionic instantonequation (2.5)requires the following
conditions on the leading coefficients:

a2
0 = b2

0 = 1, a0b0c20 = 1, f0 = −1

2
for case 1, (4.2)

a2
0 = b2

0 = 1, a0b0c20 = 1, c10 = c20 for case 2. (4.3)

Note that they are different only in the last condition, but this difference produces significant
change as we will see shortly. Thus the possible cone metrics onC(Flag6) consistent with
the instanton equation are given by

gc = dt2 + t2

(
σ 2

1 + σ 2
2 + Σ2

1 + Σ2
2 + τ2

2 + T 2
A

4

)
, (4.4)

g′
c = dt2 + t2(σ 2

1 + σ 2
2 + Σ2

1 + Σ2
2 + τ2

1 + τ2
2 ), (4.5)

corresponding to(4.2) and (4.3), respectively. It follows that the boundary condition for the
ALC metric is

g → M2
1τ

2
1 + gc or M2

2T
2
A + g′

c for t → ∞. (4.6)

We call the first caseA±∞ and the second caseB∞, and prove the following proposition.
The sign± corresponds to the choicea0 = ±b0 in (4.2);2 this difference does not appear
at the level of cone metrics, but it must be distinguished at the level of instanton solutions.

Proposition. If there exists a regular ALC solution interpolating between S1 × C(Flag6)

and R2 × Flag6 or R4 × CP(2), then the following holds:

1. For the boundary A±∞, a(t) = ±b(t) in the whole region 0 ≤ t ≤ ∞ and the solution
approaches R2 × Flag6 for t → 0.

2. For the boundary B∞, c1(t) = c2(t) in the whole region 0 ≤ t ≤ ∞ and the solution
approaches R4 × CP(2) for t → 0.

Remark. The part dt2 + 4t2T 2
A in the metric(2.8) looks like

dt2 + t2 dψ2, 0 ≤ ψ < 4π, (4.7)

when we fix the coordinates on Flag6 in A-type boundary[23]. Therefore, the range of
ψ must be adjusted to be that of usual polar coordinates onR2, 0 ≤ ψ < 2π . This

2 In (4.3), the choice of the sign does not make difference due to theZ2 symmetry of the instanton equation.



H. Kanno, Y. Yasui / Journal of Geometry and Physics 43 (2002) 310–326 319

means the manifold in the boundaryA±∞ is Flag6/Z2 rather than Flag6, which would have
0 ≤ ψ < 4π . While in the case ofB∞ it is not necessary to do such a modification
since

dt2 + t2(T 2
A + σ 2

1 + σ 2
2 ) (4.8)

in (2.9) is the standard metric onR4 written by the polar coordinates when we fix the
coordinates onCP(2).

Proof. We first consider the caseA+∞. From the instanton equation we have

a(t) − b(t) = N exp

(∫ t

u(t ′)dt ′
)
, (4.9)

whereN is an integration constant and

u(t) = 1

2ab

(
c2

1 − (a + b)2

c1
+ c2

2 − (a + b)2

c2
+ 2f

)
. (4.10)

Suppose that a regular solution exists in the form(4.9) with N �= 0. By using(4.2) with
a0 = b0, it is easy to see the asymptotic behaviora − b 	 e−2t/M1 for t → ∞. Note that
the constantM1 is required to be positive for the exponentially small suppression. If the
solution approaches the singular orbit Flag6, then the productc1c2 must be negative by the
result ofSection 2(see also(C.1)). On the other hand,c1c2 is positive in the asymptotic
region sincec1c2 → M1 for t → ∞ and hencec1 or c2 becomes zero at a certain time
t0, which contradicts the regularity condition. If the solution approaches the singular orbit
CP(2), f is positive as seen in(C.2), so the negativef in the asymptotic region leads
to a contradiction. In the case of(C.3), the productc1c2 is negative fort → 0, which
contradicts the sign in the asymptotic region. Thusa = b in the whole region, and if
there exists a regular solution with the boundaryA+∞, then it approachesR2 × Flag6 for
t → 0 since this boundary is only one consistent witha = b. Furthermore, by the discrete
symmetry of the instanton equation there exists a regular solution witha = −b for the
boundaryA−∞.

Next let us consider the caseB∞. By the instanton equation we have

c1(t) − c2(t) = N exp

(∫ t

v(t ′)dt ′
)

(4.11)

with

v(t) = 4f 2 − (c1 + c2)
2

2c1c2f
− c1 + c2

ab
. (4.12)

If we assume a regular solution(4.11) with N �= 0, then similar arguments lead to a
contradiction. Thusc1 = c2 in the whole region and the solution approachesR4 × CP(2)
given by(C.2) for t → 0. �
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5. Evidence for new global solutions

It is not easy to find exact solutions in general and we turn to numerical computations
to examine the existence of global solutions to the octonionic instantonequation (2.5). The
result of our analysis is summarized inFig. 1, which shows possible lines for existence of
global solutions in the two-dimensional parameter space of initial conditions at the singular
orbit. The circlep2 + q2 = m2 represents the Ricci-flat Kähler metrics of SU(4) holonomy
obtained inSection 3. As one can see from(3.9), near the singular orbit atr0 = (k4+/4)1/4

we have

g → dρ2 + 4ρ2T 2
A + 1

2(r
2
0 + /2)(σ 2

1 + σ 2
2 ) + 1

2(r
2
0 − /2)(Σ2

1 + Σ2
2) + r2

0(τ
2
1 + τ2

2 ),

(5.1)

whereρ2 = r0(r − r0)/2. By comparing with the expansion(C.1), we see that they are
parametrized by the circle with radiusm = r0 in the (p, q)-space of A-type boundary.
The four points on the circle,(p, q) = (±m,0) and (0,±m), correspond the Calabi
hyper-Kähler metric given by(3.10), where the holonomy group is further reduced to Sp(2).
Note that the Calabi metric satisfies B-type boundary and hence the singular orbit changes
from Flag6 to CP(2) at these points. The wavy lines attaching to the Calabi metric are the
ALC metrics of Spin(7) holonomy whose existence was expected by the second statement of
proposition (B∞ boundary). Indeed, from the numerical analysis we can find non-singular
solutions interpolating betweenS1 × C(Flag6) andR4 × CP(2) for the parameter region
q1 < −2/3 of B-type boundary(C.2), with q1 = −2/3 giving the Calabi metric[23,24].

Finally, we discuss the new metrics of Spin(7) holonomy depicted by the linesp =
±q, p2 +q2 > m2 in Fig. 1, which we shall denote byC∗

8. They are an analogue of Spin(7)
metricsC8 on the line bundle overCP(3) discussed in[24,26]. Although we have not
been able to find the solutions in closed form, the following arguments indicate they must

Fig. 1. Possible lines for the existence of global metric of special holonomy.
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exist. The solutions on the two linesp = q andp = −q are related to each other by the
action of the discrete symmetry of the instantonequation (2.5), and so we will consider the
casep = q. By rescaling the parameterp → mp, the perturbative expansion for A-type
boundary becomes

a(t) = b(t) = m

(
p + 6p2 − 1

4p3

(
t

m

)2

+ · · ·
)
,

c1(t) = m

(
1 + 2p2 − 1

2p2

(
t

m

)
+ 12p4 − 4p2 + 3

8p4

(
t

m

)2

+ · · ·
)
,

c2(t) = −m

(
1 − 2p2 − 1

2p2

(
t

m

)
+ 12p4 − 4p2 + 3

8p4

(
t

m

)2

+ · · ·
)
,

f (t) = −2t

(
1 − 12p4 + 20p2 − 1

12p4

(
t

m

)2

+ · · ·
)
, (5.2)

which shows the reductiona = b of the instanton equation. If we putc3 ≡ −2f , the
first-order system witha = b reduction is described by

ȧ

a
= c1

2a2
+ c2

2a2
+ c3

2a2
,

ċ1

c1
= − c1

a2
+ c2

1 − (c2 − c3)
2

c1c2c3
,

ċ2

c2
= − c2

a2
+ c2

2 − (c3 − c1)
2

c1c2c3
,

ċ3

c3
= − c3

a2
+ c2

3 − (c1 − c2)
2

c1c2c3
. (5.3)

After the rescalinga → √
2a we obtain exactly the same first-order system as in[24,

Eq. (8)], where it was shown numerically that the solution with the boundary(5.2)is regular
and ALC provided that the parameterp is chosen to satisfyp2 > 1/2. It is easy to check
the boundaryp2 = 1/2 corresponds to the AC solution(3.9)with the special value/ = 0.
Thus two-parameter family of ALC metricsC∗

8 has the same topology as the canonical line
bundle over Flag6. The large distance geometry ofC∗

8 can be worked out as follows. By
the proposition inSection 4, C∗

8 approaches the boundaryA+∞ for t → ∞. After some
calculation we find that the asymptotic expansion up to ordert−3 is given by

a(t) = t

(
1 + 3

8

(
M

t

)2

+ 1

4

(
M

t

)3

+ 1

2

(
7

64
− P

)(
M

t

)4

+ · · ·
)
,

c1(t) = M

(
1 − 1

2

(
M

t

)2

− 1

2

(
M

t

)3

+ · · ·
)
,

c2(t) = c3(t) = t

(
1 − 1

2

(
M

t

)
+ P

(
M

t

)4

+ · · ·
)
. (5.4)

It should be noticed that the equalityc2 = c3 is valid for all orders, if we assume that they
can be expanded as power series int−1. Hence, the series coincides with the asymptotic
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form of the ALC solutions found in[17]. The parametersM,P correspond tom,p in the
expansion around the singular orbit. Since the productc1c2 = −m2 for t → 0, we must have
M < 0. This sign is consistent with the exponentially small correction of the asymptotic
expansion. Indeed, we have

ċ2 − ċ3 = (c2 − c3)

(
(c2 + c3)

2 − c2
1

c1c2c3
− c2 + c3

a2

)
, (5.5)

which leads to the asymptotic behaviorc2 − c3 	 e4t/M using the expansion(5.4), and the
metric functions behave similarly to those in the Atiyah–Hitchin metric[26,34].
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Appendix A. Convention of SU(3) Maurer–Cartan forms

We use the following SU(3) Maurer–Cartan equation that isΣ3 symmetric:

dσ1 = Σ1 ∧ τ1 − Σ2 ∧ τ2 + κATA ∧ σ2 + κBTB ∧ σ2,

dσ2 = −Σ1 ∧ τ2 − Σ2 ∧ τ1 − κATA ∧ σ1 − κBTB ∧ σ1,

dΣ1 = τ1 ∧ σ1 − τ2 ∧ σ2 + µATA ∧ Σ2 + µBTB ∧ Σ2,

dΣ2 = −τ1 ∧ σ2 − τ2 ∧ σ1 − µATA ∧ Σ1 − µBTB ∧ Σ1,

dτ1 = σ1 ∧ Σ1 − σ2 ∧ Σ2 + νATA ∧ τ2 + νBTB ∧ τ2,

dτ2 = −σ1 ∧ Σ2 − σ2 ∧ Σ1 − νATA ∧ τ1 − νBTB ∧ τ1,

dTA = 2αAσ1 ∧ σ2 + 2βAΣ1 ∧ Σ2 + 2γAτ1 ∧ τ2,

dTB = 2αBσ1 ∧ σ2 + 2βBΣ1 ∧ Σ2 + 2γBτ1 ∧ τ2. (A.1)

This form of the Maurer–Cartan equation is symmetric under the (cyclic) permutation of
(σi,Σi, τi). From the Jacobi identity we see that the parametersα, β, γ, κ, µ, ν, which
describe the “coupling” of the Cartan generators{TA, TB} satisfy

αA + βA + γA = 0, αB + βB + γB = 0, κA = 1

∆
(βB − γB),

κB = − 1

∆
(βA − γA), µA = − 1

∆
(αB − γB), µB = 1

∆
(αA − γA),

νA = 1

∆
(αB − βB), νB = − 1

∆
(αA − βA) (A.2)
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with ∆ = βAαB − αAβB leaving four free parameters(αA,B, βA,B). We may further put
the “orthogonality” conditions:

αAαB + βAβB + γAγB = 0, κAκB + µAµB + νAνB = 0, (A.3)

which reduces one parameter.

Appendix B. Reduction of holonomy group and the octonionic instanton equation

One of the ways to realize the reduction of holonomy group is to impose appropriate linear
relations on the so(n) valued spin connection one formωab = −ωba. It is rather amusing that
in all the three cases which are most relevant from the viewpoint ofM theory compactifica-
tions the expected number of linear relations is always 7, since dim SO(8)−dim Spin(7) =
dim SO(7) − dimG2 = dim SO(6) − dim SU(3) = 7. There are topological relations
behind this dimension counting; Spin(7)/G2 	 SO(8)/SO(7) 	 S7 andG2/SU(3) 	
SO(7)/SO(6) 	 S6. In fact the following octonionic instanton equation gives a “master”
equation for seven conditions required for the reduction[27,28].

ωab = 1
2Ψabcdωcd, (B.1)

where totally anti-symmetric tensorΨabcd is defined by the structure constants of octonions
ψabc as follows:

Ψabc0 = ψabc, 1 ≤ a, b, c, . . . ,≤ 7), Ψabcd = − 1

3!
εabcdefgψefg. (B.2)

A conventional choice of the structure constants is

ψabc = +1 for (abc) = (123), (516), (624), (435), (471), (572), (673). (B.3)

It can be shown that(B.1) implies the four form defined by

Ω = 1

4!
Ψabcd ea ∧ eb ∧ ec ∧ ed (B.4)

is closed and the metric has Spin(7) holonomy[29]. In the above convention of the structure
constants of octonions the explicit form of the octonionic instanton equation is

ω14 + ω25 + ω36 + ω07 = 0, ω71 + ω62 + ω35 + ω04 = 0,

ω47 + ω65 + ω23 + ω01 = 0, ω67 + ω12 + ω54 + ω03 = 0,

ω73 + ω51 + ω24 + ω06 = 0, ω57 + ω46 + ω31 + ω02 = 0,

ω72 + ω16 + ω43 + ω05 = 0. (B.5)

If we simply substituteω0k(1 ≤ k ≤ 7), then(B.5) gives the seven conditions forG2
holonomy. Further puttingω7j (1 ≤ j ≤ 6) gives the seven conditions for SU(3) holonomy.
We should emphasize that compared with the condition on the Riemann curvature, the
condition on the spin connection depends on the gauge or the choice of coordinate system
and therefore it is only a sufficient but not necessary condition for special holonomy.
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Appendix C. Perturbative expansion around singular orbits

For A-type boundary the instanton equation is perturbatively solved in the form

a(t) = p +
(

1

p
+ (p2 + q2 − m2)(p2 − q2 + m2)

4pq2m2

)
t2 + · · · ,

b(t) = q +
(

1

q
+ (p2 + q2 − m2)(−p2 + q2 + m2)

4p2qm2

)
t2 + · · · ,

c1(t) = m +
(
p2 + q2 − m2

2pq

)
t

+
(

2

m
− m(p2 + q2 − m2)

2p2q2
− (p2 + q2 − m2)2

8p2q2m

)
t2 + · · · ,

c2(t) = −m +
(
p2 + q2 − m2

2pq

)
t

−
(

2

m
− m(p2 + q2 − m2)

2p2q2
− (p2 + q2 − m2)2

8p2q2m

)
t2 + · · · ,

f (t) = −2t

(
1 +

(
p4 + q4 + m4 − 10p2m2 − 10q2m2 − 14p2q2

12p2q2m2

)
t2 + · · ·

)
.

(C.1)

We note that the power series solution are completely fixed by the “initial conditions”
p, q,m. (This should be compared with the case of B type boundary condition in the
following.) The reductionc1 = −c2 is reproduced by imposingp2 + q2 = m2 and the
reductiona = ±b by p = ±q.

There are two possible solutions for B-type boundary. One of these is given by

a(t) = t

(
1 − 1

2
(q1 + 1)

(
t

m

)2

+ · · ·
)
, b(t) = m

(
1 + 1

2

(
t

m

)2

+ · · ·
)
,

c1(t) = c2(t) = m

(
1 +

(
t

m

)2

+ · · ·
)
, f (t) = t

(
1 + q1

(
t

m

)2

+ · · ·
)
.

(C.2)

The other solution has the following expansion:

a(t) = t

(
1 − 1

6

(
t

m

)2

+ · · ·
)
, b(t) = m

(
1 + q2

(
t

m

)2

+ · · ·
)
,

c1(t) = m

(
1 +

(
t

m

)2

+ · · ·
)
, c2(t) = −m

(
1 + 2(1 − q2)

(
t

m

)2

+ · · ·
)
,

f (t) = t

(
−1 + 2

3

(
t

m

)2

+ · · ·
)
. (C.3)
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These solutions include the free parametersq1 andq2 in addition to the scaling parameter
m. In particular, both solutions withq1 = −2/3 andq2 = 1/2 lead to a same metric and
this is in fact precisely the Calabi hyper-Kähler metric onT ∗CP(2).
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